Direct and Implicit Large-Eddy Simulation of the Taylor-Green Vortex Flow
نویسندگان
چکیده
To demonstrate the potential advantages of highorder spatial and temporal numerical methods, direct numerical and implicit large-eddy simulation of the Taylor-Green vortex flow is computed using a variable-order finite-difference code on multi-block structured meshes. The spatial operators satisfy the summation-by-parts property, with block interfaces and boundary conditions enforced with simultaneousapproximation-terms. The solution is integrated in time with explicit-first-stage, singly-diagonallyimplicit Runge-Kutta methods. An investigation into artificial dissipation and spatial filtering shows filtering is much more computationally efficient at moderate Courrant numbers, however, it does eventually place a limit on the time step. Grid convergence studies show excellent performance of higher resolution simulations, accurately capturing the decay of kinetic energy with a decay proportional to t−2 after transition to turbulence. The simulations also produce very good energy spectra, approximating a k−5/3 law at peak dissipation. In contrast, the coarse resolution simulations do very poorly, overdissipating the solution early on. High-order simulations consistently better capture the location and height of the peak dissipation. Finally, temporal convergence studies demonstrate that high-order time integration has a superior level of efficiency, except for the coarsest temporal resolution simulations.
منابع مشابه
High-order DNS and LES simulations using an implicit tensor-product discontinuous Galerkin method
This paper describes an efficient tensor-product based preconditioner for the large linear systems arising from the implicit time integration of discontinuous Galerkin (DG) discretizations. A main advantage of the DG method is its potential for high-order accuracy, but the number of degrees of freedom per element scales as p, where p is the polynomial degree and d is the spatial dimension. Stan...
متن کاملLarge eddy simulation of propane combustion in a planar trapped vortex combustor
Propane combustion in a trapped vortex combustor (TVC) is characterized via large eddy simulation coupled with filtered mass density function. A computational algorithm based on high order finite difference (FD) schemes, is employed to solve the Eulerian filtered compressible Navier-Stokes equations. In contrast, a Lagrangian Monte-Carlo solver based on the filtered mass density function is inv...
متن کاملNumerical Study of Reynolds Number Effects on Flow over a Wall-Mounted Cube in a Channel Using LES
Turbulent flow over wall-mounted cube in a channel was investigated numerically using Large Eddy Simulation. The Selective Structure Function model was used to determine eddy viscosity that appeared in the subgrid scale stress terms in momentum equations. Studies were carried out for the flows with Reynolds number ranging from 1000 to 40000. To evaluate the computational results, data was compa...
متن کاملAn adaptive local deconvolution method for implicit LES
The adaptive local deconvolution method (ALDM) is proposed as a new nonlinear discretization scheme designed for implicit large-eddy simulation (ILES) of turbulent flows. In ILES the truncation error of the discretization of the convective terms functions as a subgrid-scale model. Therefore, the model is implicitly contained within the discretization, and an explicit computation of model terms ...
متن کاملAerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy
The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...
متن کامل